
•

•

Software Versioning with Microservices through
the API Gateway Design Pattern

Akhan Akbulut*
Department of Computer Engineering Istanbul Kültür

University
Istanbul 34158, Turkey

a.akbulut@iku.edu.tr

Harry G. Perros
Department of Computer Science
North Carolina State University

Raleigh, NC 27606,USA
hp@ncsu.edu

Abstract— The microservices architecture is a relatively
new approach in implementing service-oriented systems. This
cloud- native architectural style enables the implementation of
loosely coupled, agile, reuse-oriented, and lightweight services
instead of monoliths. It also eliminates vendor and/or
technology lock-ins. A modification to a small code segment for
monoliths may require the building and deployment of a
completely new version of the software. However, the modular
form of microservices allows solving software versioning in a
polyglot manner. In this paper, we extend the well-known
microservice design pattern API gateway with a view to
managing the virtual hardware configuration of containers.
Specifically, using the proposed approach, the service capacity
in the requested version of the service is orchestrated
adaptively in compliance with a service-level agreement. In our
tests, we found that the proposed version management
approach reduced the hosting cost by 27% compared to static
or rule-based scaling.

Keywords— Microservices, Software Versioning, Version
Management, API Gateway, Design Pattern, Container Sizing,
Scaling.

I. INTRODUCTION

As software development practices continue to evolve,
the debate of using microservices to migrate traditional
monolithic architectures will only become more pronounced.
Microser- vice architectures allow developers to split
applications into distinct independent services, each having
individual logic that can be maintained and served by the
different development team.

RESTian applications are by far the most prominent ar-
chitectural style used today to expose services for manag- ing
requests from multiple channels. It utilizes the power of
HTTP instead of more complex protocols like RPC or SOAP.
However, updating the services can be a challenge if an
accurate versioning method is not employed by the
development team. At fined-grained level, software
versioning should be supported with intelligent
mechanisms.

In the case of governing multiple versions of the same
service in the ecosystem, a dynamic management mechanism
should be employed. For this reason, we have developed a
solution that can dynamically administrate the version
control and execute the scaling management of services
within the environment. The contribution of this paper is
three-fold, as follows:

i. We compiled the state-of-the-art versioning approaches
for microservices architecture currently practiced in the
software industry.

ii. We showed that version control can also be used to
improve the scaling process of microservices.

iii. We proposed an adaptive API versioning scheme
that reduces the hosting costs of the microservices
ecosystem.

The remaining of this paper is organized as follows. In
Section 2, we explain software versioning in microservices
architecture. Section 3 presents the key ideas and
methodology of our proposed approach. Section 4 reports its
performance with thorough experimental tests. Section 5
concludes the paper and discusses future works.

II. SOFTWARE VERSIONING WITH MICROSERVICES

The world of today hosts digital systems whose
requirements change frequently. Software versioning is used
to respond rapidly to these superseding requirements
without service interruptions. In addition, version control
plays an important role in software projects developed by
multiple teams that are constantly changing/updating source
codes [1]. In systems that continuously evolve, the provision
of different versions for the same service or module is
considered an anti-pattern and bad practice [2]. However, in
some cases, more than one version of the same service may
be required. For example, for users who cannot upgrade
their mobile device’s operating system to a newer version
due to hardware or developer limitations, old generation
mobile application services are be offered with the new
release services as well. For a variety of reasons, different
versions and forms of the same services may be required for
different platforms. If the ecosystem with such requirements
is not orchestrated by some complex control mechanism, the
delivery and maintenance of the service maybe problematic.

The software industry desires to build systems that can be
managed at the component level to reach highest degree of
maintainability and scalability. Microservices [3]–[5] now
recommends the use of lightweight, independently
deployable, and API-based services as the most up-to-date
presentation of the service-oriented architecture (SOA). This
approach also offers high applicability for version
management. Different versions of the same component can
be offered with employ- ment of microservices in a
coordinated manner. API versioning has two different
approaches to meet every aspect of software requirements.

Versioning in the URI : This approach is semantically
meaningful since it uses the version information in the
Uniform Resource Identifier (URI). A simple example of
this might look like http://v1.example.com/service/ or
http://api.example.com/service/v1/. The representation of an
API is immutable, and a fresh URI space needs to be
created, such as, http://api.example.com/service/v2/, with the
publication of a new version. Netflix uses a different form
of URI versioning including query strings like
http://api.netflix.com/catalog/titles/movies/70115894?v=2.0
.. This allows the development team to update a single
resource, instead of the full API. The primary disadvantage
of using URI versioning is dealing with a very large URI
footprint which may become unmanageable in the long run.
Also, there is no easy way to simply evolve a single
resource which results with inflexibility.

Versioning in the HTTP Header : If the version
information in the URI is not intended to be displayed, a
version-free URI can be offered by providing custom headers

*A. Akbulut is also with the Department of Computer Science, North
Carolina State University, Raleigh, NC 27606, USA, email:
aakbulu@ncsu.edu

978-1-7281-0450-8/19/$31.00 ©2019 IEEE 289

Authorized licensed use limited to: National Chung Cheng University. Downloaded on October 13,2020 at 07:30:06 UTC from IEEE Xplore. Restrictions apply.

of HTTP like Request Header: Api-version: 2 or Accepts-
version: 1.0. With this approach, the URI is clean and not
cluttered with versioning parameters as proposed in the URI
versioning scheme. Utilizing header versioning allows
services to be updated with a high degree of transparency,
and end- users can migrate to new versions easily. In the
same way the Accept Header spec can be modified for
different custom vendor media types, and for parameters to
be passed to create a content negotiation action. The most
common problem of this approach is dealing with caches and
proxies. The Vary HTTP header must be used for both client
and the server in order to eliminate caching-related

problems. Also, if the requests are not carefully constructed,
routing faults may arise. Compared with URI-versioned
APIs, the header versioning technique outputs less accessible
artifacts and it makes it more difficult to test and debug an
API using a browser.

Many developers prefer to employ version identifiers in
URIs instead of HTTP headers, because of the convenience
of using URIs without headers, especially in the browser. But
the only thing that does not change is that the services
offered in the back-end are accessed through an API gateway
pattern as shown in Figure 1.

Fig. 1. Microservice API Versioning

Each API versioning strategy has its own cons and pros
regarding feasibility, deployment plan, client attributes, and
server capacity. No matter which approach is preferred,
version numbering has a three digit general semantic like
x.y.z where x corresponds to major, y minor, and z patch
revisions. A major revision is applied when the development
team decides to make changes that are not compatible with
the previous version. Minor revisions are for improvements
or optimization of resources in a backward-compatible
manner. Therefore, in case of need, requests can be
redirected to services with minor revision differences.
Finally, patches are applied to fix bugs or defects of the
components.

III. METHODOLOGY

Our proposed methodology extends the API Gateway design
pattern of the Microservices architecture along with
modifying the Gateway entity by installing several
functionalities, such as, intelligent routing, observing other
ecosystem entities, and scale up or down services based on
fuzzy logic. Traditional Gateway entities are mostly
responsible for filtering spam calls, routing the requests to
proper back-end services, circuit breaking, and offloading
[6], [7]. From this perspective, our proposal increases the
load on the Gateway, but it offers an alternative solution to
version management.

The fuzzy-based API Gateway operates a logic of two
input variables and one output variable. The two input
variables are a) the number of requests from the clients and

b) the CPU utilization of the back-end microservice that
houses the requested version. The first input is a non-
negative integer, and the second one is expressed as a
percentage. The output variable indicates the action that
should be taken, and it takes the values N , N , N 0, N+,
and N ++ . N + and N ++ means that one respectively two
additional instances of the requested service should be
deployed in order to cope with the overload. N 0 means no
action should be taken. That is, the load has not changed
and the current configuration should not changed. In the
opposite direction, N and N means that one
respectively two unused nodes should be removed from the
ecosystem. We note that we only focus on horizontal
scaling as a way of adjusting the capacity of microservices.
We did not consider vertical scaling achieved by increasing
or decreasing the CPU and RAM capacities of existing
microservices. Unlike virtual machine virtualization [8],
container virtualization can deploy microservices within a
few seconds.

The primary input, the CPU utilization, is a parameter
that directly affects energy consumption. Barroso et. al. [9]
investigated the employment levels of CPU in data-centers
and found that processors operate mostly within a utilization
range of 10% to 50%. The reason for adopting these levels
is to benefit from the use of Dynamic Voltage and Frequency
Scaling (DVFS) power management mechanisms that
provide significant energy reductions (up to 40%) and power
savings (up to 20%) [8]. Based on these findings, we define
the membership functions: LI (Light), ID (Ideal), ST

290

Authorized licensed use limited to: National Chung Cheng University. Downloaded on October 13,2020 at 07:30:06 UTC from IEEE Xplore. Restrictions apply.

(Strong), and IN (Intense), as shown in Fig.2. Since we want
to benefit from low level CPU utilization, we have identified

the use of more than 40% as a ST and IN situation.

Fig. 2. Membership functions of the input variable CPU utilization

The other system input, the number of requests, vary over
time and if the service capacity is not enough to handle the
load, then there may be long processing times. On the other
hand, keeping a higher number of services than necessary,
yields an unwanted hosting cost. To determine the ideal load
for a single microservice we conducted several experiments
on the Virtual Computing Lab (VCL) of North Carolina

State University [10]. With reference to our experiments we
defined the membership function of the number of requests
as ID (Ideal), HE (Heavy), EX (Extreme), and MA
(Maximal), as shown on Fig 3.

With the proposed method, we aim at keeping the service
time as committed in the service-level agreement (SLA)
while at the same time minimizing the hosting costs.

Fig. 3. Membership functions of the input variable number of requests

Table I describes the relationship between two input
param- eters, CPU utilization and the number of requests,
and output parameter, scaling action. Using this table fuzzy
production rules can be obtained to run the execution logic.

VI.RESULTS

To evaluate the proposed methodology, we developed
two back-end services for a Unity based mobile application.
Both services were deployed using the Docker
environment [11].

TABLE I. KNOWLEDGE BASE FOR THE FUZZY-SYSTEM

LI ID ST IN

ID N 0 N 0 N 0 N +

HE N 0 N + N + N ++

EX N N 0 N + N ++

MA N N N + N ++

The first version is designed for the Android 6v.0
Marshmallow and the second is for the Android v8.0 Oreo
mobile operating system. Since the second service is not
compatible with older versions of Android users, their
requests are forwarded to the first one. Both services are
developed with NodeJS platform supported with MongoDB
document- oriented databases. The enhanced API gateway

entity was enhanced with the fuzzy-based auto-scaling
feature so that to manage the back-end microservices. In
order to generate the demand, we have also developed a
client application that generates requests to these back-end
services with different densities at different times. The
proposed fuzzy-based auto- scaling scheme is compared with
a static configuration with manual-scaling.

We conducted three experiments, each lasting for 5 hours,
for each of the three scaling techniques, ie., manual, rule-
based, and fuzzy-based. In the case of manual scaling, an
administrator monitors the load of the microservices and
scales up or down the services accordingly. For auto-scaling,
a rule-based approach is implemented with certain
thresholds. Finally, our fuzzy-based scaling technique
orchestrates the ecosystem via an API gateway microservice.
For each experi- ment, the client application created the same
synthetic demand for the microservices, which was in the
form of concurrent HTTP requests. The results obtained are
shown in Figure 4. The y-axis gives the capacity of the
system, expressed in number of users that it can serve, as it is
modified by a scaling technique over time. It is obtained by
calculating the number of active containers and then
multiplying it by 50. The blue line shows the demand in
terms of number of users.

Our experimental scenario is based on a system that
serves around 300 users on average and 500 to 600 users at
peak- times. Since we used a container with 2 vCPU and

291

Authorized licensed use limited to: National Chung Cheng University. Downloaded on October 13,2020 at 07:30:06 UTC from IEEE Xplore. Restrictions apply.

4GB RAM which is capable of serving 50 users at a time, we
decided that we wanted no fewer than 7 nodes and no
more than 50 in the auto-scaling policy. Ultimately, unlike
the manual- scaling, the auto-scaling approach can prevent
service loss during the traffic spike which hits around 13:00
hours by launching additional service instances on time.
Manual-scaling missed the peak-traffic and caused slow
service so that some users could not be served. After the
peak, the administrator cannot react on time to reduce the
number of instances and produced unnecessary hosting costs.
Our proposed scaling technique performed better in scaling
back-end microservices in changing demand.

Fig. 4. Scaling of the Microservices Over Time

It scaled services more responsively than the auto-
scaling option. The prominent feature of our approach is that
it does not need to know the intensity of the load on the
back-end microservices. As all traffic passes through the API
gateway, it knows instantaneously the service capacity of all
entities in the ecosystem. For the auto-scaling or dynamic-
scaling technique, certain metrics of all services such as
CPU, memory, and network utilization, must be continuously
monitored. There is a late reaction of the auto- scaling
service, because it has a 5-minute refresh interval. Also,
another disadvantage is that the health check process
generates an overhead and sometimes it is not possible to
work during the time the system is overloaded. This may
cause the system to drop that node because the health check
is not able to return the result.

During the experiments, we aimed to serve the clients
between 20 and 30 ms per request. In accordance with this
bound, we designed to operate the ecosystem with minimum
hosting costs. As can be seen from Table II, our proposed ap-
proach and auto-scaling meet the SLA requirements.
However, the average service time is longer with manual-
scaling due to its inability to scale up microservices in time.
In addition, the energy consumption is increased with
aggregated CPU utilization.

TABLE II. EXPERIMENTAL RESULTS

Scaling Technique
Response Time (avg) Hosting Cost

Manual-Scaling
Auto-Scaling

Our
Approach

41ms
24ms
23ms

48%
27%

more
more
-

In terms of hosting costs, calculated using AWL pricing,
our approach offered the lowest run time cost. The auto-
scaling technique has a 27% more costly hardware

allocation. We observed that the manual-scaling approach is
not applicable to systems with a varying demand. It allocated
48% more resources for microservices for the same scenario.

V.CONCLUSION
Because mobile users update their applications at

different frequencies, versioning of APIs become more
important than others. With several different versions of the
application run- ning in the live, the server needs to
consolidate and handle the various requests coming in from
new and legacy users alike. Sizing the configuration of APIs
for different versions is critical and auto-scaling systems
should be deployed in order to orchestrate the requests for
different versions. Otherwise, systems could crash during
irregular traffic patterns or the server load spikes at
unexpected times. In this paper, we pro- posed an API
versioning scheme that reduces the hosting costs of the
microservices ecosystem with employing fuzzy-logic in
adjusting service capacity as needed. The well-known API
gateway design pattern is enhanced to orchestrate the
requests for different versions of APIs and compared with
auto-scaling technique our proposed approach runs the
ecosystem with 27% less hosting cost. It provides a truly
hands-off approach to scaling while ensuring that demand
from the users is met in a timely fashion. Microservices
have gained prominence as the most recent form of SOA and
with the employment of microservices architecture, the
software versioning is easier to implement than ever. But in
order to run the different versions together in harmony,
scaling and version management should be realized with a
resourceful approach. As a continuation of this research,
we are planning to implement a neuro-fuzzy [12] routine to
dynamically update the knowledge-base as the requirements
and systems change over time.

REFERENCES

[1]J. Loeliger and M. McCullough, Version Control with Git:
Powerful tools and techniques for collaborative software development.
“O’Reilly Media, Inc.”, 2012.

[2]S. Fowler, Production-Ready Microservices. “O’Reilly Media,
Inc.”, 2016.

[3]J. Lewis and M. Fowler, “Microservices - a definition of this new
architectural term,” [Online]. Available
https://martinfowler.com/articles/microservices.html, Mar. 2014.

[4]N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F.
Montesi,R. Mustafin, and L. Safina, “Microservices: yesterday, today, and
tomor- row,” in Present and Ulterior Software Engineering. Springer,
2017, pp. 195–216.

[5]O. Zimmermann, “Microservices tenets,” Computer Science-
Research and Development, vol. 32, no. 3-4, pp. 301–310, 2017.

[6]I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen,
Microservice architecture: aligning principles, practices, and culture.
O’Reilly Media, Inc., 2016.

[7]S. Newman, Building microservices: designing fine-grained
systems.O’Reilly Media, Inc., 2015.

[8]B. Familiar, Microservices, IoT and Azure: leveraging DevOps and
Microservice architecture to deliver SaaS solutions. Apress, 2015.

[9]L. A. Barroso, J. Clidaras, and U. H ölzle, “The datacenter as a
computer: An introduction to the design of warehouse-scale machines,”
Synthesis lectures on computer architecture, vol. 8, no. 3, pp. 1–154, 2013.

[10]H. E. Schaffer, S. F. Averitt, M. I. Hoit, A. Peeler, E. D. Sills, and
M. A. Vouk, “Ncsu’s virtual computing lab: A cloud computing solution,”
Computer, vol. 42, no. 7, 2009.

[11]“Docker - enterprise container platform,” [Online]. Available
https://www.docker.com/, May 2019.

[12]K. Shihabudheen and G. Pillai, “Recent advances in neuro-fuzzy
system: A survey,” Knowledge-Based Systems, vol. 152, pp. 136–162,
2018.

292

Authorized licensed use limited to: National Chung Cheng University. Downloaded on October 13,2020 at 07:30:06 UTC from IEEE Xplore. Restrictions apply.

